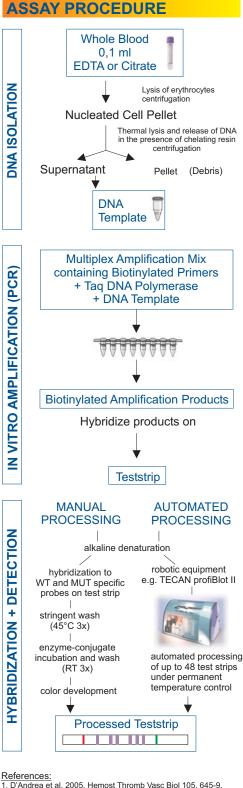
Reverse-Hybridization-Based Genetic Testing for the Prediction of Anticoagulant Dose Requirement

Helene Pühringer¹, Claudia Stöllberger², Qazim Berisha², Astrid Dossenbach-Glaninger³, Walter Krugluger³, Christian Oberkanins¹

¹ViennaLab Diagnostics GmbH, Vienna, Austria; ²Second Medical Department, Rudolfstiftung Hospital, Vienna, Austria; ³Department of Clinical Chemistry, Rudolfstiftung Hospital, Vienna, Austria


INTRODUCTION

Coumarin derivatives, such as warfarin, phenprocoumon or acenocoumarol, are the most widespread oral anticoagulant drugs for the prevention and treatment of arterial and venous thromboembolic disorders. However, these vitamin K antagonists have a narrow therapeutic range and a wide inter-individual variability in dose requirement. Despite adjustment for clinical variables adverse events (delay in achieving a stable maintenance dose or bleeding complications) are frequently encountered during the initial phase of therapy. Genetic polymorphisms in the drug-targeted vitamin K epoxide reductase complex 1 (VKORC1) and in the drug metabolizing cytochrome P450 isozyme CYP2C9 have been reported to account for the majority of variations in the therapeutic response to warfarin.(123

TEST DESIGN

Mutations covered by the PGX-Thrombo StripAssay:

Gene	Poly- morphism	Geno- type	Coumarin sensitivity
VKORC1	-1639 G>A 3730 G>A	GG GA AA GG GA AA	low intermediate high high intermediate low
CYP2C9	430 C>T (*2) 1075 A>C (*3)	CC CT TT AA AC	Metabolic status extensive intermediate poor extensive intermediate
1 2 3	4 5 6 7	VKORC1 37 CYP2C9 4 CYP2C9 10 VKORC1 -16 VKORC1 37 CYP2C9 4 CYP2C9 10	Line (top) 39 [G>A] mutant 30 [G>A] mutant 30 [C>T] mutant 175 [A>C] wild type 30 [G>A] wild type 30 [C>T] wild type 30 [C>T] wild type for Line (bottom)
Sample # 1 2 3 4 5 6 7 VKORC1 -1639 G>A GG AA GA GA GA GG GG VKORC1 3730 G>A AA GG GG GA GA AA CYP2C9 *1*1 *1*1 *1*1 *1*2 *1*3 *1*2 Figure 1: Image of different staining patterns obtained with the PGX-Thrombo StripAssay. Strip #1-6: Patient samples; strip 7: no template control Strip #1-6: Patient samples; strip 7: no template control			

D'Andrea et al. 2005, Hemost Thromb Vasc Biol 105, 645-9.
Rieder et al. 2005, NEJM 352, 2285-33.
Sconce et al. 2005, Hemost Thromb Vasc Biol 106, 2329-33.

RESULTS

Fifty-three patients on phenprocoumon (Marcumar[®]) therapy were retrospectively genotyped for VKORC1 and CYP2C9 variants. The VKORC1 -1639 G>A polymorphism is clearly associated with higher phenprocoumon sensitivity, whereas the 3730 G>A variant is associated with lower sensitivity.

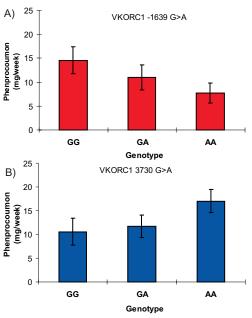


Figure 2: Effect of VKORC1 genotypes on phenprocoumon dose requirement.

Weekly phenprocoumon dose related to A) -1639 G>A genotypes (GG n=19; GA n=23; AA n=11) and B) 3730 G>A genotypes (GG n=25; GA n=21; AA n=7). Bars represent means +/- SD.

Due to the small number of *2 (n= 12) and *3 (n=7) CYP2C9 variants in our present patient cohort, their effect on phenprocoumon dose requirement will be assessed from a larger sample size in our ongoing study.

SUMMARY

•OBJECTIVE: to develop a diagnostic tool for predicting the response of patients to coumarin derivatives; results will assist clinicians to achieve a more individualized anticoagulant therapy •SPEED: short total assay time (~5h)

•CONVENIENCE: ready-to-use reagents and prefabricated teststrips; proprietary software (Evaluator) available for automated scanning of teststrips and interpretation of band patterns •SAMPLE SIZE: single multiplex PCR; only approx.

•SAMPLE SIZE: single multiplex PCR; only approx. 50 ng DNA needed

•SIMPLICITY: simple and straightforward protocol; inexpensive equipment (thermocycler, waterbath, shaker); easy and clear interpretation of results

•EFFICIENCY: accessible to automation using robotic equipment

•FLEXIBILITY: new mutations readily integrated